
Resonant states in  quantum wells: theoretical analysis of the density of states

and phase times

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 2039

(http://iopscience.iop.org/0953-8984/10/9/010)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 16:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/9
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 2039–2052. Printed in the UK PII: S0953-8984(98)85346-0

Resonant states in GaAs/Ga1−xAlxAs quantum wells:
theoretical analysis of the density of states and phase times

M Hammouchi†, E H El Boudouti†, A Nougaoui† and B Djafari-Rouhani‡
† Laboratoire d’Optique et de Dynamique des Matériaux Moĺeculaires, D́epartement de Physique,
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Abstract. The existence of sharp resonant states in a single quantum well separated from its
semi-infinite substrate by a barrier layer is reported here. These resonances appear as well
defined peaks in the density of states. The local and total densities of states are obtained from
an analytical determination of the Green functions. The expressions of the transmission and
reflection phase times are also derived and compared to the density of states. The positions
of the peaks in the density of states enable us to study the energy levels of resonant states
as a function of the thicknesses of the barrier and well layers. Specific applications of our
analytical results are given in this paper for a GaAs/Ga0.7Al 0.3As bilayer sandwiched between
two semi-infinite GaAs and Ga0.7Al 0.3As media.

1. Introduction

A great deal of work has been devoted during the last decade to the study of electron
states confined inside a spatial zone, often called a ‘well’, of finite size along at least
one direction. In such systems, the medium surrounding the well must form a ‘barrier’
which prevents the well wave function from extending much outside it. In particular, it
has been shown recently [1–4] that the ideal quantum well (QW) potential in which one
considers a QW system to be terminated on either side by barriers of finite height, but
infinite in extent, needs to be modified to take into account the finite-size effect of the
barriers surrounding the QW. Moisonet al [1] have performed an extended study byin situ
photoluminescence on the effect of a cap layer (barrier of finite extent) on bound states in
GaAs/Ga0.7Al 0.3As QWs and their interaction with surface states. Fafardet al [2, 3] have
studied the effect of the high potential at the device surface on the above barrier (continuum)
states in a simple GaAs/InxGa1−xAs structure; intense above-barrier oscillations related to
the oscillations in the probabilities of finding carriers in the various region induced by finite
cap layers were observed in photoluminescence spectra. Above-barrier optical transitions in
Ga1−x1Al x1As/GaAs/Ga1−x3

Al x3As compositionally asymmetric single QWs have also been
investigated with piezomodulation spectroscopy by Parkset al [4]; in particular they have
observed the presence of quasibound resonant states existing in the continuum between the
barrier energies in both the conduction and the valence bands. However, in all these studies
the effect of the substrate (i.e., a buffer layer of large extent), which serves as support for
the devices, on electron states in these structures is usually ignored, except in [5] where the
substrate affects only continuum states situated above the barriers of the well.
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In this paper, we examine below- and above-barrier resonant states in a single GaAs
QW of thicknessd2 (see figure 1) confined on one side by a Ga0.7Al 0.3As barrier of infinite
extent and on the other side by a Ga0.7Al 0.3As barrier of finite extent (cap layer of thickness
d1). The whole system is deposited on a GaAs substrate which represents the buffer layer
of infinite extent. Among different mathematical approaches, the Green function method is
quite suitable for studying the spectral properties of these composite materials; in particular,
it enables us to calculate the total or local density of states (DOS) in which the resonant
states appear as well defined peaks. The Green function approach allowed us also to
determine the transmission and reflection rates as well as the phase times. The phase times
are considered [6] to be relevant physical times to describe the motion of wave packets
narrow in wave-number space. There are several other times [7–9]; however the only well
defined and well established one [8] is the ‘dwell time’ which is the average time spent
in a given region by all incoming particles. We show that the positions of the resonances
obtained from DOS coincide with those given by phase times and transmission rates. The
halfwidth of the peaks in the DOS and phase times are related to the lifetime of the resonant
states. The Green function used here is calculated by using the interface response theory
in composite materials [10] in which the solution is first searched in the restricted space of
interfaces before being extended to the whole material (see below).

Figure 1. Schematic representation (a) and potential profile (b) of a single quantum well with a
well layer GaAs surrounded by two Ga0.7Al 0.3As barriers of finite and infinite extent; the whole
system is deposited on a GaAs substrate.d1 andd2 are respectively the thickness of the barrier
and well layers.

The organization of this paper is as follows: section 2 presents the analytical results
for the Green functions and densities of states. Section 3 gives the expressions of the
transmission and reflection rates. Section 4 shows the numerical results for the structure
depicted in figure 1.
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2. Density of states calculation

2.1. The Green function calculation

An approximate and simple expression of the change in the density of states (DOS)1n(E)

is given by Trzeciakowskiet al [11] for single- and double-barrier structures. The local DOS
is also analysed in the same structure by Bahderet al [12]. These DOSs are obtained by
calculating the eigenfunctions of an effective-mass Schrödinger equation. In this section, we
give an exact and complete calculation of local and total DOS associated with the structure
depicted in figure 1. We calculate the DOS by using the theory of interface response in
composite material [10]. In this theory, the Green functiong of a composite system can be
written as [10]

g(DD) = G(DD)+G(DM)G−1(MM)[g(MM)−G(MM)]G−1(MM)G(MD) (1)

whereD andM are respectively the whole space and the space of the interfaces in the
composite material. In the continuum model,M is just limited to the planesx3 = 0, d1 and
d = d1+d2 (see figure 1).G is a block-diagonal matrix in which each blockGi corresponds
to the bulk Green function of the subsystemi. In our case, the composite material is
composed of slabs of materialsi (i = 1, 2) with thicknessdi sandwiched between two
semi-infinite materialsi = 0 andi = 3. In equation (1), the calculation ofg(DD) requires,
besidesGi , the knowledge ofg(MM). In practice, the latter is obtained by inverting the
matrix g−1(MM) which can be simply built from a juxtaposition of the matrixg−1

si (MM),
wheregsi(MM) is the interface Green function of the slabi (i = 1, 2) and of the substrate
j (j = 0, 3) alone [10] with stress-free boundary conditions.

Therefore the first step before addressing the problem of layered materials will be to
know the surface element of the Green functiongsi of a slab of mediumi and substrate
j with stress-free boundary conditions. These surface elements can be written [10] in the
case of a slab as a (2× 2) matrix gsi(MiMi), within the interface spaceMi , namely

g−1
si (MiMi) =

[
Ai Bi

Bi Ai

]
(2)

where

Mi ≡ {0, d} for i = 1 andMi ≡ {d1, d = d1+ d2} for i = 2

Ai = −Fi Ci
Si

Bi = Ci

Si
Ci = coshαidi Si = sinhαidi (3)

Fi = h̄2

2mi
αi α2

i = −
2mi
h̄2 (E − Ei) with i = 1, 2

while in the case of the substratej , the surface element is given by [10]

g−1
sj (MjMj) = −Fj (j = 0, 3) (4)

where

Mj ≡ {0} for j = 0 andMj ≡ {d} for j = 3.

Thus, the inverse of the Green function within the total interface spaceM is obtained
by a juxtaposition of the matricesg−1

si (MiMi) (2) andg−1
si (MjMj) (4) (see equation (2.43c)

of [10])

g−1(MM) =

−F0− F1C1
S1

F1
S1

0
F1
S1

−F1C1
S1
− F2C2

S2

F2
S2

0 F2
S2

−F2C2
S2
− F3

 (5)
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whereM ≡ {0, d1, d}. By inverting the matrixg−1(MM), we obtain

g(MM)=− 1

W



C1C2+ F2

F1
S1S2

+F3

F2
C1S2+ F3

F1
C2S1

C2+ F3

F2
S2 1

C2+ F3

F2
S2

C1C2+ F0

F1
C2S1

+F3

F2
C1S2+ F0F3

F1F2
S1S2

C1+ F0

F1
S1

1 C1+ F0

F1
S1

C1C2+ F0

F2
C1S2

+F0

F1
C2S1+ F1

F2
S1S2


(6)

where

W = C1C2(F0+ F3)+ C1S2

(
F0F3

F2
+ F2

)
+ C2S1

(
F0F3

F1
+ F1

)
+S1S2

(
F1F3

F2
+ F0F2

F1

)
. (7)

From the knowledge of these interface matrix elements one can obtain the Green function
between any two points of the whole system (see (1)). However, as we are interested in
the calculation of the DOS, we only give their expressions for two points belonging both
either to the two substrates (j = 0, 3) or to the two layers (i = 1, 2).

Let us recall first that the bulk Green function of the mediumi is given by [10]

Gi(x3, x
′
3) = −

e−αi |x3−x ′3|

2Fi
(8)

whereαi andFi are given by (3).
Thus, the Green function between any two points of each mediumi is given by

equations (1), (6) and (8), and can be written as follows:

(i) when the two points are inside the mediumi = 0 (x3, x
′
3 6 0)

g(x3, x
′
3) = −

e−a0|x3−x ′3|

2F0

+
{

1

2F0
− 1

W

[
C1C2+ F2

F1
S1S2+ F3

F2
C1S2+ F3

F1
C1S1

]}
eα0(x

′
3+x3) (9)

(ii) when the two points are inside the mediumi = 1 (06 x3, x
′
3 6 d1)

g(x3, x
′
3) = −

e−α1|x3−x ′3|

2F1
+ 1

S2
1

{A sinh(α1(d1− x3)) sinh(α1(d1− x ′3))

+B[sinh(α1x3) sinh(α1(d1− x ′3))+ sinh(α1(d1− x3)) sinh(α1x
′
3)]

+C(sinh(α1x3) sinh(α1x
′
3))} (10)

where

A = − 1

W

(
C1C2+ F2

F1
S1S2+ F3

F2
C1S2+ F3

F1
C2S1

)
+ 1

2F1
(11)

B = − 1

W

(
C2+ F3

F2
S3

)
+ e−α1d1

2F1
(12)
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and

C = − 1

W

(
C1C2+ F0

F1
C2C1+ F3

F2
C1S2+ F0F3

F1F2
S1S2

)
+ 1

2F1
(13)

(iii) when the two points are inside the mediumi = 2 (d1 6 x3, x
′
3 6 d)

g(x3, x
′
3) = −

e−α2|x3−x ′3|

2F2
+ 1

S2
2

{D sinh(α2(d − x3)) sinh(α2(d − x ′3))

+E[sinh(α2(d − x3)) sinh(α1(x
′
3− d1))

+ sinh(α2(x3− d1)) sinh(α2(d − x ′3))]
+F sinh(α2(x3− d1)) sinh(α1(x

′
3− d1))} (14)

where

D = − 1

W

(
C1C2+ F0

F1
C2S1+ F3

F2
C1S2+ F0F3

F1F2
S1S2

)
+ 1

2F2
(15)

E = − 1

W

(
C1+ F0

F1
S1

)
+ e−α2d2

2F2
(16)

F = − 1

W

(
C1C2+ F1

F2
S1S2+ F0

F1
C2S1+ F0

F2
C1S2

)
+ 1

2F2
(17)

(iv) when the two points are inside the mediumi = 3 (x3, x
′
3 > d)

g(x3, x
′
3) = −

e−α3|x3−x ′3|

2F3

+
{

1

2F3
− 1

W

[
C1C2+ F1

F2
S1S2+ F0

F2
C1S2+ F0

F1
C2S1

]}
e−α3(x

′
3+x3−2d).

(18)

2.2. The local density of states

The local density of state on the planex3 is given by

n(E, x3) = − 1

π
Im g+(E, x3) (19)

where

g+(E, x3) = lim
ε→0

g(E + iε, x3) (20)

andg(E) is the above-defined Green’s function.

2.3. The total density of states

The total density of states is obtained by integrating overx3 the local density of states in
the above-defined composite system (figure 1) from which the contribution of the bulk of
the semi-infinite media are subtracted. This variation1n(E) can be written as

1n(E) = 1n0(E)+ n1(E)+ n2(E)+1n3(E) (21)
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where1n0(E) and 1n3(E) are the variation of the DOS in mediai = 0 and i = 3
respectively andn1(E) andn2(E) the DOS in the layers 1 and 2 respectively. These four
quantities are given by

1n0(E) = − 1

π
Im
∫ 0

−∞
[g(x3, x3)−G0(x3, x3)] dx3 (22)

n1(E) = − 1

π
Im
∫ d1

0
[g(x3, x3)] dx3 (23)

n2(E) = − 1

π
Im
∫ d

d1

[g(x3, x3)] dx3 (24)

1n3(E) = − 1

π
Im
∫ +∞
d

[g(x3, x3)−G3(x3, x3)] dx3. (25)

g, G0 andG3 are, respectively, the Green function of the whole system depicted in figure 1,
the substrate (0) and the semi-infinite medium (3). With the help of the explicit expressions
of the Green functions given above ((8)–(10), (14), (18) and (22)–(25)), we obtain

1n0(E) = − 1

π
Im

{
1

2α0

[
1

2F0
− 1

W

(
C1C2+ F2

F1
S1S2+ F3

F2
C1S2+ F3

F1
C2S1

)]}
(26)

n1(E) = − 1

π
Im

(
− d1

2F1
+ 1

2α1S
2
1

[(A+ C)(C1S1− α1d1)+ 2B(α1d1C1− S1)]

)
(27)

n2(E) = − 1

π
Im

(
− d2

2F2
+ 1

2α2S
2
2

[(D + F)(C2S2− α2d2)+ 2E(α2d2C2− S2)]

)
(28)

1n3(E) = − 1

π
Im

{
1

2α3

[
1

2F3
− 1

W

(
C1C2+ F1

F2
S1S2+ F0

F2
C1S2+ F0

F1
C2S1

)]}
. (29)

3. Reflected and transmitted waves

The deformation|ψ(D)〉 of a composite material is given by [10]

|ψ(D)〉 = |9(D)〉 −G(DM)G−1(MM)|9(M)〉
+G(DM)G−1(MM)g(MM)G−1(MM)|9(M)〉 (30)

where|9(D)〉 represents the deformation of the reference system. In particular, if|9(D)〉
is a wave function of incident electrons in the substratei = 0 represented by the plane
wave90(x3) = e−α0x3 of unit amplitude, equation (30) enables us to calculate all the waves
reflected and transmitted by the interfaces.

With the help of the Green functions given above ((6) and (8)), the deformationψ0(x3)

in the substrate (0) is found to be

ψ0(x3) = e−α0x3 +
{
−1+ 2F0

w

[
C1C2+ F2

F1
S1S2+ F3

F2
C1S2+ F3

F1
C2S1

]}
eα0x3 (31)

while in the semi-infinite medium (3), we obtain

ψ3(x3) = e−α3x3 − 2F0

W
e−α3(x3−d). (32)

The first term in the right-hand side of equations (31) and (32) corresponds to the incident
wave function of the electrons, while the second term is associated with the wave function
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of the reflected and transmitted electrons in the substratei = 0 and in the semi-infinite
mediumi = 3 respectively. These later quantities are expressed, respectively, as

CR eα0x3 andCT e−α3(x3−d) (33)

where

CR = 2F0

W

(
C1C2+ F2

F1
S1S2+ F3

F2
C1S2+ F3

F1
C2S1

)
− 1 (34)

and

CT = −2F0

W
. (35)

CR andCT are the reflection and transmission amplitudes respectively. The reflection
rateR and transmission rateT are defined by

R = |CR|2 andT = |CT |2. (36)

The reflection and transmission phase times, i.e. the time that it takes the peak of a
wave packet to appear on the left and right sides of the double layers (i = 1, 2) are given
respectively, in the stationary phase approximation, by [13, 14]

τR = h̄dθR
dE

andτT = h̄dθT
dE

(37)

whereh = 2πh̄ is the Planck constant andθR and θT are the phases of the reflected and
transmitted amplitudes of electrons scattered off the two embedded layers.

4. Numerical results

For the numerical calculations, we investigate the existence and behaviour of resonant
states (called also leaky waves) in a GaAs well sandwiched between a Ga0.7Al 0.3As barrier
of infinite extent and a Ga0.7Al 0.3As barrier whose thickness is variable, the whole system is
deposited on a GaAs substrate (figure 1). The effective mass of the electron inside the well
and barrier are [15] 0.067m0 and 0.0919m0, respectively, wherem0 = 9.11× 10−31 kg.
The barrier height is [15] 283.2 meV. Even though we are dealing with the system depicted
in figure 1, our calculation could be utilized also for a system with different potential
configuration.

Figure 2 gives an illustration of the dispersion curves of energy levels in the structure
depicted in figure 1. The thickness of the GaAs well is such thatd2 = 70 Å and the
thicknessd1 of the barrier layer is taken to be variable. All the branches in figure 2
represent resonant states induced by the Ga0.7Al 0.3As/GaAs bilayer in the continuum of the
bulk bands of GaAs substrate and Ga0.7Al 0.3As barrier of infinite extent. These resonant
states are obtained from the maxima of the DOS, shown in figure 3 for a few values
of the thicknessd1. The full horizontal line in figure 2 represents the position of the
energy levelE3 = E1. The two curves situated belowE3 represent resonant waves of the
well, and appear as well defined peaks in the DOS of figure 3, even though they are in
resonance with the bulk states of the GaAs substrate, the corresponding energies of these
resonances present a very small variation withd1 (see figure 2). Note that for the sake
of illustration of very narrow peaks, the resonances in figure 3 are enlarged by adding a
small imaginary partε to the energyE. Moreover, the intensity of the resonances belowE3

increases by increasing the thicknessd1 of the Ga0.7Al 0.3As barrier, and for large values of
d1 (see figure 3(d)), the resonances appear as delta functions of weight 1 as the interaction
between the GaAs well and the GaAs substrate becomes very weak. Let us mention that
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Figure 2. Variation of the energy levels of resonant states, ford2 = 70 Å, as a function ofd1

whered1 andd2 are respectively the thickness of the Ga0.7Al 0.3As barrier and GaAs well. The
horizontal full line indicates the position of the barrier heightE3.

similar results are found by Moisonet al [1], where the energy position and intensity of the
photoluminescence originating from the GaAs well are attributed to the coupling of GaAs
confined states with surface states confined in a very thin GaAs well located at the surface
of the device. On the other hand, we obtain the same behaviour as in figure 3 for the
DOS (not given here) on changing the height of the barrier layer, namely the intensity of
resonances increases on increasing the height of the barrier layer, while the height of the
barrier of infinite extent (figure 1) is kept constant. Concerning the curves lying aboveE3

in figure 2, they present a noticeable variation with varyingd1 and tend asymptotically to
the limit of E3 whend1 → ∞. These resonances correspond to waves with predominant
amplitudes in the Ga0.7Al 0.3As barrier (see below), even though they are propagating in
the whole GaAs/Ga0.7Al 0.3As/GaAs/Ga0.7Al 0.3As system. The corresponding peaks in
the DOS present a noticeable intensity only for large values ofd1 and in the vicinity of
E3. Recently, Fafardet al [2] have observed, in photoreflectance experiments, oscillatory
behaviour induced by a barrier layer (called a cap layer) in GaAs/InxGa1−xAs quantum
wells, where the effects of the energy levels of a high potential in the vicinity of the quantum
well have been studied. Calculations [5] of the probability of finding carriers in the cap
layer of the device are derived and present similar behaviour as our DOS calculations, in
particular the two latter quantities present sharp peaks in the vicinity ofE3, and outside
these resonance peaks goes back down close to zero (see figures 3(d) and 6(a)).

An analysis of the local DOS as a function of the space positionx3 (figure 4) clearly
shows the localization properties of the different kinds of state belonging to different
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Figure 3. Variation of the DOS as explained in (21) ford1 = 20 Å, 50 Å, 100 Å and 400Å in
figure 2, whiled2 is kept constant (d2 = 70 Å). The antiresonances appearing atE0 = 0 meV
andE3 correspond to delta peaks of weight−1/4, resulting from the subtraction of the bulk
bands of the GaAs substrate and Ga0.7Al 0.3As barrier of infinite extent.

energy range. The local DOS reflects the spatial behaviour of the square modulus of
the wave function (i.e., the charge distribution). Figures 4(a) and (b) correspond to the
states respectively labelled 1 and 2 in figures 3(a) and 3(d), showing that these resonances
are confined in the GaAs well. Moreover, for small thickness of the Ga0.7Al 0.3As barrier
(figure 3(a)), the interaction between states in the GaAs well and GaAs substrate becomes
important and electrons could propagate in the GaAs substrate by tunnelling through the
Ga0.7Al 0.3As barrier. Figure 4(c) corresponds to the state labelled 3 in figure 3(d), showing
that this resonance rather belongs to the barrier layer.

A similar behaviour was found for excitons [16], optical waves [17] and electrons
[18, 19] in multiquantum wells, where above-barrier states are localized in the barrier rather
than in the well regions.

It is well established that DOS is a much better characteristic of resonant states than
transmission rate [11, 20]. However, to our knowledge, there has been no comparison
between the DOS and the reflection and transmission phase times to date. In figures 5
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Figure 4. Spatial representation of the local DOS forE = 52.33 meV (a),E = 199.8 meV (b)
andE = 285.7 meV (c). These resonances are respectively labelled 1, 2 and 3 in figures 3(a)
and 3(b). The space positions of the different interfaces are marked by vertical lines.

and 6, we give a comparison of all the quantities cited above for two different values of the
barrier layer:d1 = 20 Å (figure 5) andd1 = 400 Å (figure 6), while the well thickness is
kept constant (d2 = 70 Å). Note that the very sharp peaks in the DOS are not broadened
artificially by adding a small imaginary part to the energyE, as is the case in figure 3. This
is the reason why delta functions do not appear in figure 6(a).

In figure 5(a), two resonances appear belowE3 in the DOS and give the same behaviour
as the reflection phase time. Indeed, the halfwidths of the peaks in these two quantities are
related to the lifetimes of the resonances. However, the intensity of the peaks in the DOS
gives the weight of the resonances, while the intensity of the peaks in the reflection phase
time gives the time needed for electron to complete the reflection process. Let us mention
that, for energies belowE3, the reflection rate is unity (i.e., the transmission rate is zero),
therefore, only the phase time gives us information on the interaction of an incident electron
with resonant states confined in the GaAs well.

As mentioned above, for a large value ofd1 (figure 6) and for energies lying below
E3, we find the situation of a classical quantum well sandwiched between two barriers
of infinite extent; the resonant states become bound (localized) states: their energies are
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Figure 5. Energy dependence of the DOS (a) and reflected phase timeτR (b) for d1 = 20 Å
andd2 = 70 Å. The arrows indicate the positions ofE0 andE3 energy levels.

indicated by arrows in the DOS (figure 6(a)). However, for the energy rangeE > E3,
the resonant states depend strongly on the Ga0.7Al 0.3As barrier thickness and their intensity
decreases with increasing energy. On the other hand, the transmission rate (figure 6(b))
shows sharp peaks with energy positions corresponding to the resonances in figure 6(a);
however at high energies the peaks in the DOS vanish, while the peaks in the transmission
rate oscillate before they reach unity. An analysis of the phase times of the transmitted
and reflected electrons from the GaAs/Ga0.7Al 0.3As bilayer, shows that the transmitted and
reflected phase times (figures 6(c), (d)) have the same behaviour as the DOS for energies
lying aboveE3. We remark also that the time needed for an electron to be reflected is
almost twice that needed for the transmission. Reflected and transmitted phase times are
interpreted as the delay motion of the electrons to appear on the right and left sides of the
GaAs/Ga0.7Al 0.3As double layers.

Finally, as a matter of completeness, we have also studied the behaviour of the resonant
states as a function of the GaAs well layer thickness. Figure 7 presents the variation of the
energy of the resonances as a function of the thicknessd2 for a given value of the barrier
layer d1 such thatd1 = 200 Å. The resonances lying belowE3 tend asymptotically to the
limit of E0 = 0 meV whend2→∞; their intensities in the DOS increase with increasing
d2. However, the peaks of the DOS aboveE3 become very weak and probably very difficult
to observe experimentally [1].
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Figure 6. Energy dependence of the DOS (a), transmission rate (b), transmitted phase timesτT
(c) and reflected phase timesτR (d) for d1 = 400 Å and d2 = 70 Å.

5. Discussion and summary

Our DOS and phase time results revealed a variety of features associated with the interactions
of a GaAs substrate bulk states with states of a quantum well. We have shown, in particular,
the existence of well defined peaks in the DOS and phase times associated with resonant
states in the GaAs well, even though they are in resonance with the bulk states of the
GaAs substrate. The intensity of the peaks in the DOS and phase times depend strongly
on the width of the barrier separating the well and the substrate. Indeed, the effect of
the substrate on resonant states below the barrier appear, essentially, in the broadening of
the corresponding peaks in the DOS and phase times for thin barrier layer thickness as
the interaction between confined states in the GaAs well and the GaAs substrate is strong.
However, for large barrier layer thickness, the resonant states do not feel the effect of the
substrate as the interaction between the states in the well and in the substrate become very
weak. For energies lying above the barrier, the resonant states become very broadened in
the DOS and phase times especially for high energies due to their interaction with the bulk
states of both the GaAs substrate and the Ga0.7Al 0.3As barrier of infinite extent (figure 1).
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Figure 7. Variation of the energy levels of resonant states, ford1 = 200 Å, as a function ofd2.

Our results reveal also that the peaks in the DOS and phase times present similar behaviour
as a function of energy.

In the absence of the GaAs substrate (e.g., for a high substrate potentialE0 as in the
case of an AlAs material), the resonant states lying below the barrier become localized
(or bounded) states given by the vanishing of the dominator of the Green function (7),
with decaying wave functions in the substrate region. However, the above-barrier states
(E3 < E < E0) remain resonant states because of their interaction with the bulk states of
the Ga0.7Al 0.3As barrier of infinite extent. This latter situation, which is different from ours,
is studied in previous works [1–3] where the barrier layer of finite thickness in figure 1
plays the role of a cap layer at the surface of the device. Therefore, substrates on which
quantum well structures are grown together with barrier layers separating the substrate and
the well should be taken into account for estimating device applications. Our results are in
accordance with experimental studies [1–4] showing the necessity of considering the nature
and size of the media surrounding a quantum well system.

In summary, we have presented an analytical calculation of the Green functions for
electronic energy levels in a single quantum well taking into account the effect of the size
and the height of barrier separating the well and the substrate as well as the effect of this
latter material (called the buffer layer in experiments) which serves as a support for the
device. These complete and closed-form expressions of the Green functions can be used to
study any physical property of this structure. This includes the calculation of local and total
densities of states and the determination of the dispersion relation for resonant waves in the
structure. The Green function approach used in this analysis also enables us to obtain the
reflection and transmission rates as well as the corresponding phase times.
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The expression of the DOS enables us to derive the dispersion of resonant states
(called also leaky waves or quasibounds) in the embedded GaAs/Ga0.7Al 0.3As bilayer.
Particular attention was devoted to (i) sharp resonant waves confined in the GaAs well,
as a consequence of its separation from the GaAs substrate by a Ga0.7Al 0.3As barrier of
finite thickness, (ii) above-barrier resonant waves propagating in the whole system with an
important confinement in the barrier layer. These resonances appear as well defined peaks
of the DOS and phase times, with their relative importance being very dependent on the
thickness of the barrier and the well layers as well as on the substrate. The experimental
observation of the sharp resonances predicted here in such a single quantum well can be
possible with photoluminescence [1] and photoreflectance [2] techniques.

Note also the measured time delay of a photon tunnelling through a one-dimensional
photonic band material [21]. Let us mention, finally, that similar results to those presented
here are found by some authors for transverse [22] and sagittal [23] elastic waves in an
adsorbed bilayer on a substrate.
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